
舒淇被躁120分钟视频手机版下载
详情介绍
舒淇被躁120分钟视频安装包下载是一款模拟经营策略游戏,该版本玩家可以直接通过安卓模拟器在电脑上安装体验。该游戏采用唯美的水墨画风,将中国风元素融入游戏场景,为玩家带来极致的视觉享受,让您沉浸其中,感受w3u7903ejky2ywls之美。在游戏中,玩家将扮演一位祖师,开宗立派,培养一众有趣的弟子,帮助他们渡劫成仙。每位弟子都拥有独特的命格和属性,个性迥异,让您体验到千奇百怪的修仙生活。
与此同时,舒淇被躁120分钟视频中文版下载还拥有独特的挂机机制,您可以将游戏放置在后台,解放双手,让弟子们自动修炼、渡劫,贴心呵护您的修仙门派。宗门地产建设也是游戏的重要内容,您可以自由摆放,打造属于自己的修仙宗门,创造仙门人的理想家园。从山海异兽到一石一木,处处充满着古韵仙风,让您仿佛置身于修仙小说般的仙境之中。
Salesforce开源统一多模态模型BLIP3-o,图像理解与生成全拿下特色
OpenAI 的 GPT-4o 在图像理解、生成和编辑任务上展现了顶级性能。流行的架构猜想是:
Tokens → [Autoregressive 模型] → [Diffusion 模型] → 图像像素
该混合架构将自回归与扩散模型的优势结合。Salesforce Research、马里兰大学、弗吉尼亚理工、纽约大学、华盛顿大学的研究者在最新的研究(统一多模态模型 BLIP3-o)中也采用了自回归 + 扩散框架。
论文标题:BLIP3-o: A Family of Fully Open Unified Multimodal Models—Architecture, Training and Datase论文地址:https://arxiv.org/pdf/2505.09568v1GitHub 代码:https://github.com/JiuhaiChen/BLIP3o模型权重:https://huggingface.co/BLIP3o/BLIP3o-Model在线演示:https://huggingface.co/spaces/BLIP3o/blip-3o预训练:https://huggingface.co/datasets/BLIP3o/BLIP3o-Pretrain-Long-Caption指令微调:https://huggingface.co/datasets/BLIP3o/BLIP3o-60k
在这个框架里,自回归模型先生成连续的中间视觉特征,用以逼近真实图像表示,进而引出两个关键问题:
真实特征来源 (Ground-truth features):用 VAE 还是 CLIP 将图像编码为连续特征?特征对齐方式:使用 MSE 损失,还是借助扩散模型(Flow Matching)来对齐预测与真实特征?
统一多模态下的图像生成
研究者考察两种图像编码–解码范式:
VAE:将图像编码为 low level 像素特征,以获得更好的重建质量。但 VAE 编码器在处理更高分辨率输入时,会生成更长的向量序列,从而增加训练过程中的计算负担。CLIP + Diffusion:先将图像映射到 high level 语义特征,再通过扩散模型重建真实图像。在实际操作过程中,会先用 CLIP 得到图像特征,然后基于 CLIP feature 训练一个扩散模型来重建图像。该方法好处是无论输入图像分辨率如何,每张图像都可编码为固定长度的连续向量 (比如长度为 64 的向量),这种编码方式能有较好的图像压缩率;但需要额外训练来使扩散模型适配不同的 CLIP 编码器。
针对自回归模型预测的视觉特征与 VAE/CLIP 提供的真实特征,有两类训练目标:
MSE:对预测特征与真实特征计算均方误差Flow Matching:基于自回归模型生成的预测特征,通过流匹配损失训练一个 Diffusion Transformer,用 Diffusion Transformer 的输出值来逼近 CLIP 或 VAE 特征
结合不同的编码–解码架构与训练目标,共有三种设计选择:
CLIP + MSE:最小化预测表征与 CLIP 真实表征之间的 MSE, 比如 Emu2、SeedX。在生成图片的时候,自回归模型生成视觉特征,基于这个视觉特征,使用一个扩散模型来解码图片。CLIP + Flow Matching:以自回归模型预测的视觉特征为条件,使用流匹配损失来训练 Diffusion Transformer,以预测真实的 CLIP 表征。在生成图片的时候,自回归模型生成视觉特征,基于这个视觉特征,Diffusion Transformer 生成一个 CLIP feature,然后再基于这个 CLIP feature,使用一个轻量的扩散模型来解码图片。整个过程涉及两次扩散过程,第一次生成 CLIP feature,第二次生成真实图片。VAE + Flow Matching:以自回归模型预测的视觉特征为条件,使用流匹配损失来训练 Diffusion Transformer,以预测真实的 VAE 表征。在生成图片的时候,自回归模型生成视觉特征,基于这个视觉特征,Diffusion Transformer 生成一个 VAE feature, 由 VAE 解码器来生成真实图片。
Caption: 在统一多模态模型中,图像生成有三种设计方案。所有方案均采用自回归 + 扩散框架,但在图像生成组件上各有不同。对于流匹配损失,保持自回归模型冻结,仅微调图像生成模块 (Diffusion Transformer),以保留模型的语言能力。
下图对比了这三种方案在相同设置下的表现,证明CLIP + Flow Matching能在提示对齐、图像多样性与视觉质量之间取得最佳平衡。
Caption: 不同方案的对比
研究者发现将图像生成集成到统一模型时,自回归模型对语义级特征(CLIP)的学习比对像素级特征(VAE)的学习更为高效。同时,将流匹配 (Flow Matching)作为训练目标能够更好地捕捉图像分布,从而带来更丰富的样本多样性和更出色的视觉质量。同时有两个阶段的扩散过程,相对于传统的一个阶段的扩散模型,将图像生成分解成了两个阶段,第一阶段自回归模型和 diffusion transformer 只负责生成语义特征,第二阶段再由一个轻量的扩散模型来补全 low-level 特征,从而大幅减轻训练压力。
统一图像理解与生成
通过 CLIP 编码器,图像理解与图像生成共用同一语义空间,实现了两者的统一。
研究者采用顺序训练(late fusion)而非联合训练(early fusion),原因在于:
可以冻结自回归模型,保留其图像理解能力;把全部训练资源集中在图像生成模块,避免多任务间的相互干扰。
caption:联合训练(early fusion)同时更新理解和生成模块,顺序训练 (late fusion)先独立调优「理解」,再冻结骨干只训练「生成」。
BLIP3-o:统一多模态模型
基于上述对比,研究者选定CLIP + Flow Matching与顺序训练 (late fusion),构建了 4B 和 8B 参数的 BLIP3-o:
预训练数据:25M 开源图文 + 30M 专有图像图像字幕 (caption):均由 Qwen-2.5-VL-7B-Instruct 生成,平均 120 token;为增强对短提示的适应,还额外混入~10%(6M)的短字幕(20 token)4B 参数开源模型:纯 25M 开源图文对,及~10%(3M)短字幕指令微调:GPT-4o 生成 60K 条高质量示例,显著提升提示对齐和视觉美感
所有代码、模型、数据均陆续开源中,欢迎试用!
Caption: BLIP3-o 可视化示例
研究者发现:
模型能迅速调整至 GPT-4o 风格,提示对齐 (instruction following) 和视觉质量均大幅提升。
caption:图像理解表现
Caption: 图像生成的基准性能与人工评估
结论
本文首次系统地探索了结合自回归与扩散架构的统一多模态建模,评估了三个关键维度:图像表示(CLIP 特征 vs. VAE 特征)、训练目标(流匹配 vs. MSE)和训练策略(early fusion vs. 顺 late fusion)。实验结果表明,将 CLIP 嵌入与流匹配损失相结合,不仅加快了训练速度,也提升了生成质量。
基于这些发现,本文推出了 BLIP3-o, 一系列先进的统一多模态模型,并通过 BLIP3o-60k 6 万条指令微调数据集,大幅改善了提示对齐效果和视觉美感。研究者还正在积极开展该模型的应用研究,包括迭代图像编辑、视觉对话和逐步视觉推理。
游戏亮点
1、丰富多彩的修仙玩法
除了培养弟子和建设仙门外,游戏还包含了炼丹、炼器、仙田等多种修仙玩法,让玩家体验到修仙的方方面面。
2、自由建设的仙门地产
玩家可以自由摆放修仙宗门的建筑,打造属于自己的修仙家园,创造仙门人的理想世界。
3、精美细腻的游戏画面
游戏的画面精致细腻,每一个场景都充满了古典美感,让玩家仿佛身临其境,感受到修仙之美。
4、社交互动的乐趣
游戏内置丰富的社交系统,玩家可以与其他玩家组成联盟,共同对抗强敌,体验多人合作的乐趣,增加了游戏的可玩性和趣味性。
游戏评测
1、游戏玩法丰富,内容深度十足,给玩家带来了极佳的游戏体验。2、画面精美,场景设计唯美,让玩家沉浸其中,感受到了修仙世界的奇幻美感。
3、挂机系统的设置贴心实用,解放了玩家的双手,让玩家更轻松地享受游戏乐趣。
4、弟子个性化塑造突出,每个弟子都有自己独特的故事和特点,增加了游戏的趣味性和可玩性。
更新日志
v5.1.9版本
1.1调整问鼎苍穹席位赛的防守阵容设置规则,现在任何时候都可以调整防守阵容
1.2优化天道树领悟道果时道果数量不足的获取提示,现在会自动打开道果宝箱,方便祖师快捷获取
1.3优化新增仙法问道投资活动的购买提示,现在休赛期购买投资时,如果无法拿满奖励则会有二次确认提示
1.4修复连续炼制同种丹药时,炼制材料的数量显示异常的错误
下载地址
- 电脑版
- /安卓版
- 本地下载通道:
- 仅下载APK文件
同类游戏
网友评论
共0条评论类似游戏
-
动漫❌扶他❌女同❌触手 v6.610.734316 休闲益智 / 1.4G
-
少妇裸体做爰免费视频软件中文版下载 模拟经营 / 875.23MB
-
6losccA片毛片手机版下载 角色扮演 / 1.95G
-
蘑菇在线AV v3.965.434104 模拟经营 / 812.2MB
-
小蓝GV蓝色男同网站PC端下载 角色扮演 / 2.6G
精彩发现
换一换精品推荐
-
免费婬乱AAA大片女人 v9.849.936476 经营养成 / 1.9MB
查看 -
美女被❌到爽🔞流触手 v9.366.370420 经营养成 / 440.17MB
查看 -
我被多男下药玩弄身体男女 v7.8.19 经营养成 / 1.73G
查看 -
惩罚女扒开🍑用棉签和冰块软件 v5.9.20 经营养成 / 88.26MB
查看 -
18🈲H观看下载观看黄 v9.440.251290 经营养成 / 1.45MB
查看